
I. INTRODUCTION

The unsteady and unsaturated flow of water through
soils is due to content changes as a function of time and
entire pore spaces are not completely filled with flowing
liquid respectively. Knowledge concerning such flows some
helps some workers like hydrologist, agriculturalists, many
fields of science and engineering. The water infiltrations
system and the underground disposal of seepage and waste
water are encountered by these flows, which are described
by nonlinear partial differential equation.

The mathematical model conforms to the hydrological
solution of one dimensional vertical ground water recharge
by spreading. Such flow is of great importance in water
resource science, soil engineering and agricultural sciences.

If a fluid contained in a porous medium is displaced by
another fluid of lesser viscosity, then it is frequently
observed that the displacing fluid has a strong tendency to
protrude in form of fingers (instabilities) into more viscous
fluid. This phenomenon is called fingering.

In Fig. 1, fingering process has been shown between
oil-water flows into a porous medium. In petroleum
engineering, the fingering process is a well-known
phenomenon occurring in displacement of oil by water by
flooding that is a common oil recovery technique.

In the statistical treatment of fingering [8] only average
cross-sectional area occupied by the fingers was observed
while the size and shape of the individual fingers are
neglected as in Fig. 2. Scheidegger and Jhonson [9]
discussed the statistical behaviour in homogeneous porous
media with capillary pressure. Verma [10] has examined the
behaviour of fingering in a displacement process through
heterogeneous porous media.

In this paper, we have numerically discussed the
phenomenon of instabilities in a displacement process
involving two immiscible liquids. Numerical solution of
governing non-linear partial differential equation has been
obtained by ADM. The numerical results are obtained at
various time levels.

II. DESCRIPTION OF FRACTIONAL
CALCULUS

There are mathematical definitions about fractional
derivative [1, 2]. Here, we adopt the two usually used
definitions: the caputo and its reverse operator Riemann-
Liouville. That is because caputo fractional derivative allows
traditional initial condition assumption and boundary
conditions. More details one can consult [1]. We give some
basic definitions and properties of the fractional calculus
theory which are used further in this paper.
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Fig. 3. Saturation of injected liquid at different time.

Definition 1:

The Reimann-Liouville fractional integral operator of
order 0  is defined as,
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The properties of J are JJ = J +  for ,  > 0 which
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The Reimann-Liouville derivative has certain
disadvantages when trying to model real-world phenomena
with fractional differential equations. Therefore, we shall
introduce now a modified fractional differential operator D

*


proposed by M. Caputo in his work on the theory of
viscoelasticity.

Definition 2:

The fractional derivative of f(x) in the Caputo sense is
defined as,
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In this paper, the fractional derivatives are considered
in the Caputo sense. The reason for adopting the Caputo
definition is as follows:

To solve differential equation (both classical and
fractional), we need to specify additional conditions in order
to produce a unique solution. For the case of Caputo
fractional differential equations, these additional conditions
are just the traditional conditions, which are akin to those
of classical differential equations and are therefore familiar
to us. In contrast, for Riemann-Liouville fractional differential
equations, these additional conditions constitute certain
fractional derivatives (and/or integrals) of the unknown
solution at the initial point x = 0, which are functions of x.
These initial conditions are not physical. Furthermore it is
not clear how such qualities are to be measured from
experiment, say, so that they can be appropriately assigned
in an analysis [10].

III. ANALYSIS OF THE NUMERICAL METHOD

We consider the following time-fractional partial
differential equation

D
*t
 = f(u, u

x
, u

xx
) + g(x, t), m � 1 <  < m       ... (1)

where D
*t
 is the Caputo fractional derivative of order

, ,m N f is a nonlinear function and g is the source
function.

The decomposition method requires that the nonlinear
fractional differential equation (1) be expressed in terms of
operator from as

D
*t
u(x, t) + Lu(x, t) + Nu(x, t) = g(x, t), x > 0    ... (2)

where L is a linear operator which might include other
fractional derivatives of order less than a, N is a non-linear
operator which also might include other fractional derivatives
of order less than , g(x, t) and D

*t
 are defined as in

equation (1).

Applying the operator J, the inverse of the operator
D

*t
, to both sides of equation (1) yields
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The Adomian decomposition method [1-4] suggests the
solution u(x, t) be decomposed into the infinite series of
components

0
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and the nonlinear function in equation is decomposed
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as follows:
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where A
n
 are so-called the Adomian polynomials.

Substitution the decomposition series (4) and (5) into
both sides of (3) gives
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From this equation, the iterates are determined by the
following recursive way
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The Adomian polynomial A
n
 can be calculated for all

forms of nonlinearity according to specific algorithms
constructed by Adomian [3]. The general form of formula
for A

n
 Adomian polynomials is
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This formula is easy to compute to get as many
polynomials as we need in the calculation of the numerical
as well as explicit solutions.

Finally, we approximate the solution u(x, t) by the
truncated series

1

0
( , ) ( , )

N
N nn

x t u x t



 

and lim ( , ) ( , )N
N

x t u x t


            ... (9)

However, in many cases the exact solution in a closed
form may be obtained. Moreover, the decomposition series
solutions generally converge very rapidly. The convergence
of the decomposition series has been investigated in [5-7].
They obtained some results about the speed of convergence
of this method. In recent work of Abbaoui and Cherruault
[7] have proposed a new approach of convergence of the
decomposition series. The authors have given a new
condition for obtaining convergence of the decomposition
series to the classical presentation of the ADM in [7].

IV. FINGERING IN A HOMOGENEOUS
MEDIUM

A. Statement of the problem

We consider that there is a uniform water injection into
an oil saturated porous medium of homogeneous physical
characteristics, such that the injecting water cuts through
the oil formation and give rise to protuberance. This
furnishes a well developed fingers flow. Since the entire oil
at the initial boundary (x = 0) is displaced through a small
distance due to the water injection. Therefore, we assume,
further that complete water saturation exists at the initial
boundary.

B. Formulation of the problem

The seepage of water (v
w
) and oil (v

o
) are given by

Darcy's Law,
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where K is the permeability of the homogeneous
medium, K

w
 and K

0
 are relative permeability of water and

oil, which are functions of S
w
 and S

o
 (S

w
 and S

o
 are the

saturation of water and oil) respectively, P
w
 and P

o
 are

pressure of water and oil, 
w
 and 

o
 are constant kinematic

viscosities,  is the inclination of the bed and g is
acceleration due to gravity.

Regarding the phase densities are constant, the
equations of continuity of the two phase are:
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               ... (13)

where P is porosity of the medium. From the definition
of phase saturation, it is evident that,

S
w
 + S

o
 = 1                      ... (14)

The capillary pressure P
c
 is defined as

P
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0
S
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P
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w
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where 
0
 is a constant quantity.

At this state, for definiteness of mathematical analysis,
we assume standard relationship due to Scheidegger and
Jhonson [11], between phase saturation and relative
permeability as

K
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K
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The equation of motion for saturation can be obtained
by substituting the values of V

w
 and V

0
 from equation (10)

and (11) into the equation (12) and (13) respectively, we
get,
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These are the general flow equations of the phase in
homogeneous medium, when effects due to pressure
discontinuity and gravity term in inclined porous medium
are considered.

Eliminating wP

x
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from equations (19) and (16), we
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Combining equation (20) and (21) and using equation
(5), we get,
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Integrating above equation with respect to x, we have
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where V is constant of integrating which can be
evaluated from later on. Simplification of (22) gives
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The value of pressure of oil (P
o
) can be written as [12]

of the form
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where P is the mean pressure which is constant,
therefore (24) implies
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Substituting the value of V from above equation in
equation (23), we get,
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A set of suitable boundary conditions associated to
problem (25) are

s
w
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w
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Equation (25) is reduced to dimensionless from by
setting
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            ... (27)

In equation (27) and (28) the asterisk are dropped for
simplicity.

Equation (27) is desired nonlinear differential equation
of motion for the flow of immiscible liquid in homogeneous
medium.

The problem is solved by using Adomain Decomposition
Method. The numerical values are shown by table. Curves
indicate the behaviour of saturation of water corresponding
to various time periods.

C. Solution of the problem using Adomain Decomposition
Method:
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Taking the initial condition s
w
(x, 0) = s
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 = f(x)

Applying the operator J on both the sides of equation
(1) using initial condition,
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Following Adomain decomposition method, the solution
is represented as infinite series like,
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The first three components of these polynomials are,
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Other polynomials can be generated in like manner,
substituting the decomposition series (30) and (31) into
equation (29) yields the following recursive formula,
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D. Interpretation

In graph X-axis represents the vales of x and Y-axis
represents the saturation of injected liquid (s

w
) of porous

media of length one.

Initially saturation of injected liquid is zero at each point
on observed region. Also, there is full injected liquid
saturation (i.e. s

w
 = 1) at injected face x = 0 and there is no

saturation of injected liquid at other end (x = 1) inspective
of time.

It is clear from graph that, for each value of T, saturation
s

w
 has a decreasing tendency along the space co-ordinate

axis. Also, for each point of X saturation increases as time
increases but the rate at which it rises at each point in
observed region slows down with increase in time. This
shows that the stabilization of the fingers is truly possible
with the assumption made for capillary pressure and water
saturation.

Table1: The approximate solution for saturation of
injected liquid for different values
of x at different time using ADM.

 x T = 0 T = 0.1 T = 0.2 T = 0.3 T = 0.4
T = 0.5 T = 0.6 T = 0.7 T = 0.8 T = 0.9 T = 1

 0 0 0 0 0 0
0 0 0 0 0
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0

0.1 0.061207 0.006005 0.004874 0.004118 0.003643 0.003329 0.00311 0.002949 0.002826 0.00273 0.002652

0.2 0.128851 0.021126 0.015964 0.013091 0.011439 0.010404 0.009706 0.009209 0.008838 0.008552 0.008326

0.3 0.20361 0.047578 0.035451 0.029066 0.025509 0.023329 0.021882 0.020864 0.020113 0.019538 0.019085

0.4 0.28623 0.088276 0.066492 0.055299 0.049153 0.045425 0.042972 0.041255 0.039996 0.039036 0.038284

0.5 0.377541 0.147133 0.113719 0.096753 0.087505 0.081923 0.078266 0.075715 0.073849 0.072431 0.071321

0.6 0.478454 0.229499 0.184015 0.161045 0.148567 0.141055 0.136143 0.132722 0.130223 0.128326 0.126843

0.7 0.58998 0.342833 0.287697 0.259904 0.244824 0.235753 0.229826 0.225701 0.222688 0.220402 0.218615

0.8 0.713236 0.497707 0.440362 0.411444 0.395749 0.386306 0.380135 0.37584 0.372703 0.370323 0.368462

0.9 0.849455 0.709352 0.665723 0.643681 0.631704 0.624492 0.619775 0.616491 0.61409 0.612269 0.610844

 1 1 1 1 1 1 1 1 1 1 1 1
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