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ABSTRACT 

The present paper deals with establishment of some fixed point and common fixed point results in L-
spaces.  Common fixed point theorems are proved for two, three and four mappings. Some of them 
contain rational expressions.  AMS Subject Classification: 47 H10.  
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INTRODUCTION 
 
It was shown by Kashara [4] in 1975 that 
several known generalization of the Banach 
contraction theorem can be derived easily 
from a fixed point theorem in an L-space. 
Iseki [2] has used the fundamental idea of 
Kashara to investigate the generalization of 
some known fixed point theorems in L-spaces. 
Many other mathematicians Yeh [16], Singh 
[13], Pachpatte [9], Pathak and Dubey [10], 
Patel et al, [11], Patel and Patel [12], Som 
[14], Sao [15], worked for L- spaces. Recently 
we Bhardwaj et al [1] have also worked on L-
spaces.  In the present paper a similar 

investigation for the study of fixed point and 
common fixed point theorems in L-spaces are 
worked out. We find some fixed point and 
common fixed point theorems in L-spaces. 
The results are stronger in rational expressions 
that of others. In this paper we find some 
results on common fixed point in rational 
expressions for four mappings.  
 
Preliminaries 
Definition (3.A): L-Space: Let N be a set of 
all non negative integers and X is a non-empty 
set. A pair (X, →) of a set X and a subset   
of the set XN x X, is called an L-space if  
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Definition (3.B): An L-Space (X, →) is said to be separated if each sequence in X converge to at 
most one point of X. 
Definition (3.C): A mapping T of an L-Space (X, →) into an L-Space (X, →) is said to be 
continuous  
 

if    
NnnNininn xxsequencesubsomeForTxTxxx


,,  

 
Definition (3.D): Let d be non-negative extended real valued function on X x X, 
 0 ≤ d(x, y) < ∞ 
for all x, y ε X, an L-Space (X, →) is said to be d-complete if each sequence, 
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{xn}n εN,  in X with Σ d (xi, yi+1) < ∞ converge to at most one point of X. 
 
 Lemma (3.E): (K.S.): Let (X, →) be an L-Space which is d- complete for a non-negative real 
valued function d on X x  X, if (X, →) is separated, then  
       d (x, y)= d(y, x)=0, implies x=y for every x , y in X. 
 
RESULTS                                      
 
Theorem (4.1):Let (X, →) be a separated L-
Space which is d- complete for a non-negative 
real valued function d on X x X with d(x,x)=0 

for all x in X. Let E be a continuous shelf map 
of X, satisfying the conditions. 
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Proof: Let x0 be an arbitrary point in X; define sequence {xn} recurrently,  
     Ex0=x1,    Ex1=x2, -----------------   Exn=xn+1,     
    Where, n= 0, 1, 2, 3, ------------- 
 Now by (4.1a) we have  
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For every natural number we can say that Σ d (xn,xn+1) ≤ ∞ 
By d-completeness of the space, the sequence {Enx0}, n   N converges to some u in x. By 
continuity of E, the sub sequence {Enix0} also converges to u. 
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     Eu =u, so u is a fixed point of E. 
 
Uniqueness: In order to prove that u is the unique fixed point of E, if possible let V be any other 
fixed point of E, (v ≠ u). Then 
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This is a contradiction because α < 1 .So E has a unique fixed point in X.                                     
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Theorem (4.2):  Let (X, →) be a separated L-
Space which is d- complete for a non-negative 
real valued function d on X x X with d(x,x)=0 

for all x in X. Let E and T be two continuous 
shelf mappings of X, satisfying the conditions: 

 )()(,).2.4( XTXETEETa   
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Proof:  Let x0  

 be an arbitrary point in x, since )()( xTxE   
We can chose x1  X such that Ex0 =Tx1, Ex1 =Tx2                      
                                                                      ------------------------- 
                                   Exn=Txn+1      for n= 1, 2, 3, ---------------- 
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        2

1

11111

111

],,,,

,,,,[

nnnnnnnn

nnnnnnnn

ExTxdExTxdExTxdExTxd

ExTxdExTxdExTxdExTxd







 

 

                       
       

        2

1

1121121

111211

],,,,

,,,,[









nnnnnnnn

nnnnnnnn

TxTxdTxTxdTxTxdTxTxd

TxTxdTxTxdTxTxdTxTxd
 

                            2

1

121 )],([][),(   nnnn TxTxdTxTxd                  

                                   ------------------------------------- 
                                   -------------------------------------- 

               Hence, 2
2121 ,),(),(  kwhereTxTxdkTxTxd n

nn  

                For every natural number m, we can write the 
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By d-completeness of x, the sequence {Tnx0}n ε N converges to some u ε X. Since E(x)T(x), So 
E(T(u))→Eu, and T(E(u))→Tu 
we have, Eu=Tu 

Since TuXTnTuXT nn

n



))lim((,lim 00      ---------- (4.2b)  

 This implies that Tu=u 
Hence Tu=Eu=u 
Thus u is common fixed point of E and T.  
Uniqueness: For the uniqueness of the common fixed point, if possible let v  be any other 
common fixed point of E and T; Then from (4.2b)       
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Which is a contradiction because δ <1 
Hence E and T have unique common fixed point in X. 
Now we will find some common fixed theorems for three mappings. 
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Theorem ( 4.3) Let (X, →) be a separated L-
Space which is d- complete for a non-negative 
real valued function d on X x X with d(x,x)=0 

for all x in X. Let E, F, T be three continuous 
shelves mapping of X, satisfying the 
conditions: 

  
 )()()()(,,a) (4.3 XTXFAndXTXETFFTTEET   
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for all x, y ε X and α, ≥0 with α <1.Then E, F, T have unique common fixed point. 
 
Proof: Let x0 be a point in X. Since E(X) T(X), we can choose a point x1 in X such that 
Tx1=Ex0, also F(x)T(X). We can choose a point x2 in x such that Tx2=Fx1. 
In general we can choose the point                       
                 Tx2n+1=Ex2n,   ------------------------   (4.3 c) 
                Tx2n+2=Fx2n+1.  ------------------------ (4.3d)    
For every n ε N, we have 
  )],([)],([ 1222212   nnnn FxExdTxTxd  
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For n= 1, 2, 3, ---------------------, 
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Similarly we have 
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 kn d(Tx1,Tx0) 
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Thus the d-completeness of the space implies the sequence {Tnx0}n ε N, converges to some u in X. 
So (Enx0) n ε N, and (Fnx0) n ε N also converges to the some point u respectively. 
Since E,T, and F are continuous, there is a subsequence t of {Tnx0}, n ε N such that  E(T(t))→Eu, 
T(E(t))→Tu, F(T(t))→Fu and T(F(t))→Tu 
Hence we have   Eu=Fu=Tu ------------------- (4.3 e) 
Thus T(Tu) =T(Eu)=E(Fu)=T(Fu)=F(Tu) =E(Tu)=F(Eu) =F(Fu)--------- (4.3 f) 
So we have, if Eu ≠ F (Eu) 
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Which is a contradiction because δ <1                                                                                                                       
Hence Eu =F (Eu) ------------------------- (4.3 g) 
So 
Eu = F (Eu) =T (Eu) =E (Eu) 
 Hence Eu is a common fixed point of E, F, & T 
Uniqueness:   Let u &v (u ≠ v) be two common fixed points of E,F & T 
  Then we have 
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 Which is a contradiction, because δ <1                                                                                                                       
 Hence u =v. 
So E, F & T have unique common fixed point. 
 
Theorem (4.4) Let (X, →) be a separated L 
space which is d-complete for a non- negative 

real valued function d on XxX with d(x,x) = 0 
for each x in X.  
 

Let E, F and T be three continuous self mapping of X satisfying (4.2.6 a) and 
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                                                                                                              ---------- (4.4a)   
For all x,y  in X, Tx ≠ Ty ,α ≥ 0 with  α  < 1,   
If some positive integer p, q exists such that   Ep , Fq and T are continuous, Then E,F,T have a 
unique fixed point in X. 
Proof: It can be proved easily by the help of (4.3). 
 Now we will prove some common fixed point theorem for four mappings, which contains 
rational expressions. 
 
Theorem (4.5) Let (X, →) be a separated L-
Space which is d- complete for a non-negative 
real valued function d on X x X with d(x,x)=0 

for all x in X. Let E, F, T and S be continuous 
shelf mappings of X, satisfying the conditions: 
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Proof: Let x0 ε X, there exists a point x1 ε X, such that Tx1 =Ax0, and for this point x1, we can 
choose a point x2 ε X such that Bx1 =Sx2 and so on inductively, we can define a sequence {yn} in 
X such that y2n =Tx2n+1 = Ex2n   and y2n+1 = Sx2n+2 = Fx2n+1, where 
   n = 0, 1, 2 -- 
 we have ,    122122 ,,   nnnn FxExdyyd  
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Case Ist :       12121221212 ,,,,max   nnnnnn FxTxdTxSxdFxTxd  

Then     122122 ,,   nnnn FxExdFxExd   

Which is not possible, because α < 1.So taking  
      1221221212 ,,,,max   nnnnnn TxSxdTxSxdFxTxd  
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For every integer p > 0, we get  
       pnpnnnnnpnn yydyydyydyyd   ,,,, 1211
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Letting n → ∞, we have d (yn, yn+p) → 0 .Therefore {yn} is a Cauchy sequence in X. By d-
completeness of X, Nnny }{  , is converges to some u ε X. So subsequence 

{Ex2n},{Fx2n+1},{Tx2n}and {Sx2n+1}of {yn} also converges to same point u. Since E,F,T and S are 
continuous, such that  
E[S(xn)] → Eu , S [E(xn) ] → Su ,F[T(xn)] → Fu ,and T[F(xn)] → Tu  
So, Eu = Su; Fu =Tu  
Now from (4.5 a) and (4.5 b)  
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d(Eu,u ) ≤ d( Su,u) = α d(Eu,u)  
This is a contradiction, because α < 1. 
So Eu =Su = u, that is u is common fixed point of E and S. Similarly we can prove  
Fu =Tu = u. So E, F, S and T have common fixed point. 
Uniqueness: In order to prove uniqueness of common fixed point, let v be another fixed point of 
E,F,T and S, such that v ≠ u, 
d(u, v) = d (Eu, Fv ) 
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d (u, v)  ≤ α d(u ,v),this is a contradiction because α < 1 
Hence u is the unique common fixed point of E, T, F and S. 
This completes the proof. 
 
Theorem (4.6)Let (X, →) be a separated L-
Space which is d- complete for a non-negative 
real valued function d on X x X with d(x, x)=0 

for all x in X. Let E, F, T and S be continuous 
shelf mappings of X, satisfying the conditions: 
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Proof: This theorem follows by theorem (4.5) 
Theorem (4.7)Let (X, →) be a separated L-Space which is d- complete for a non-negative real 
valued function d on X x X with d(x,x)=0 for all x in X. Let E, F, T and S be continuous shelf 
mappings of X, satisfying the conditions: 
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On applying the process same as in theorem (4.5) 
d(y2n,y2n+1) = d(Ex2n,Fx2n+1) 
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CaseIst : 
 If            122212122212122 ,,,,,,,max   nnnnnnnnnn yydyydyydyydyyd  

Then by case first of theorem (4.5), it is a contradiction. 
Case IInd 

If,            nnnnnnnnnn yydyydyydyydyyd 212212122212122 ,,,,,,,max    

Then by theorem (4.5), it is clear that, E, F, T and S have unique common fixed point. 
Case IIIrd 
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As applying the same process in second part 
of theorem, we get a unique common fixed 

point for E, F,T and S. This completes the 
proof. 
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